Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

Experimental Determination of Adult and Pediatric Neck Scale Factors

2002-11-11
2002-22-0020
The purpose of this study was to determine scale factors for small, mid-size and large adults using a caprine model. In a previous study conducted in our lab, scaling relationships were developed to define cervical spine tolerance values of children using caprine specimens. In that study, tolerances were normalized with respect to an average adult. Because airbag-related injuries are associated with out-of-position children and small adult females, additional experimental data are needed to better estimate human tolerance. In the present study, cervical spine radiographs from the 5th, 50th and 95th percentile human adults were used to determine vertebral body heights for small, mid-size and large anthropometries. Mean human vertebral body heights were computed for each anthropometry and were normalized with respect to mid-size anthropometry.
Technical Paper

Biomechanical and Injury Response to Posterolateral Loading From Torso Side Airbags

2010-11-03
2010-22-0012
This study characterized thoracoabdominal response to posterolateral loading from a seat-mounted side airbag. Seven unembalmed post-mortem human subjects were exposed to ten airbag deployments. Subjects were positioned such that the deploying airbag first contacted the posterolateral thorax between T6 and L1 while stationary (n = 3 x 2 aspects) or while subjected to left lateral sled impact at ΔV = 6.7 m/s (n = 4). Chestband contours were analyzed to quantify deformation direction in the thoracic x-y plane (zero degrees indicating anterior and 180° indicating posterior), magnitude, rate, and viscous response. Skeletal injuries were consistent with posterolateral contact; visceral injuries consisted of renal (n = 1) or splenic (n = 3) lacerations. Deformation direction was transient during sled impact, progressing from 122 ± 5° at deformation onset to 90° following maximum deflection. Angles from stationary subjects progressed from 141 ± 9° to 120°.
Technical Paper

Assessment of 3 and 6-Year-Old Neck Injury Criteria Based on Field Investigation, Modeling, and Sled Testing

2006-04-03
2006-01-0253
The intent of this study was to compare the neck responses measured from the Hybrid III 3 and 6-year-old ATDs in laboratory testing to injuries sustained by three children in a field crash and investigate the appropriateness of recommended in-position neck injury assessment reference values (IARVs), and the regulated out-of-position (OOP) IARVs specified in FMVSS 208 for the Hybrid III 3 and 6-year-old ATDs. This paper principally reports on apparent artifacts associated with the Hybrid III 3 and 6-year-old ATDs, which complicated investigating the appropriateness of the in-position and out-of-position neck IARVs. In tests using 3-point belt restraints, these apparent artifacts included: 1) High neck extension moments, which produced the peak Nij values, without significant observed relative head-to-neck motion, 2) Neck tension forces well in excess of the IARVs that occurred when the ATD's chin contacted the chest.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Lower Cervical Spine Loading in Frontal Sled Tests Using Inverse Dynamics: Potential Applications for Lower Neck Injury Criteria

2010-11-03
2010-22-0008
Lower cervical spine injuries are more common in survivors of motor vehicle crashes sustaining neck trauma. Injury criteria are determined using upper neck loads in dummies although a lower neck load cell exists. Due to a paucity of lower neck data from post mortem human subject (PMHS) studies, this research was designed to determine the head-neck biomechanics with a focus on lower neck metrics and injuries. Sixteen frontal impact tests were conducted using five belted PMHS. Instrumentation consisted of a pyramid-shaped nine accelerometer package on the head, tri-axial accelerometer on T1, and uniaxial accelerometer on the sled. Three-dimensional kinematics of the head-neck complex were obtained using a 20-camera high-speed motion analysis system. Testing sequence was: low (3.6 m/s), medium (6.9 m/s), repeat low, and high (15.8 m/s) velocities. Trauma evaluations were made between tests. Testing was terminated upon confirmation of injuries.
Journal Article

Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts

2023-06-27
2022-22-0002
The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed.
Technical Paper

Biomechanical Tolerance of the Cranium

1994-09-01
941727
The objective of the study was to investigate the biomechanical response of the intact cranium. Unembalmed human cadavers were used in the study. The specimens were transected at the base of the skull leaving the intracranial contents intact; x-ray and computed tomography (CT) scans were obtained. They were fixed in a specially designed frame at the auditory meatus level and placed on the platform of an electrohydraulic testing device via a six-axis load cell. Following radiography, quasistatic loading to failure was applied to one of the following sites: frontal, vertex, parietal, temporal, or occipital. Retroreflective targets were placed in two mutually orthogonal planes to record the localized temporal kinematics. Applied load and piston displacement, and the output generalized force (and moment) histories were recorded using a modular digital data acquisition system. After the test, x-ray and CT images were obtained, and defleshing was done.
Technical Paper

Tractor Induced Wheel Runover Injuries

1994-09-01
941728
In the present investigation a tractor wheel runover accident was simulated to obtain biomechanical information relating to mechanism of injury. Twelve cadaver porcine specimens were runover with the right front wheel of a tractor. Specimens were placed on a six-axis force plate and thorax contours were recorded temporally. Results indicated up to 68% compression of the chest occurred during the runover event. The shear force in the direction of travel was a significant factor in the type of fractures that occurred to the rib cage. Pathology determined from x-ray revealed multiple fractures per rib in the area directly below the path of the tire. Autopsy evaluation revealed soft tissue contusion on the left side in the area of wheel path. There was often extra blood in the pericardial space and examination of the brain showed petechial hemorrhaging subdurally.
X